Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.399
Filtrar
1.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577949

RESUMO

Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia­reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol­cytochrome c reductase core protein U, the Bcl­2­associated X protein/B­cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule­associated protein 1 light 3 protein, caspase­3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND­99 staining results showed that BBR pretreatment inhibited H/R­induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase­3. However, the protective effects of BBR were attenuated by pAD/RhoE­small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP­activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP­activated protein kinase pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Berberina , Traumatismo por Reperfusão Miocárdica , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Berberina/farmacologia , Caspase 3/metabolismo , Dissulfeto de Glutationa/metabolismo , Isquemia/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Animais , Ratos
2.
Wei Sheng Yan Jiu ; 53(2): 300-309, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604968

RESUMO

OBJECTIVE: To investigate the effects and possible mechanisms of negative air ions(NAIs) on blood pressure, oxidative stress, and inflammatory status in spontaneous hypertension rats(SHR). METHODS: A total of 60 SHR(half male and half female) were randomly divided into one-month and three-month groups, 30 rats per groups, based on the duration of the intervention. Each group was further randomized into three groups based on the daily intervention time: SHR control group, 2 h NAIs-SHR group, and 6 h NAIs-SHR group, 10 rats per groups. In addition, 20 Wistar Kyoto(WKY)(half male and half female), were randomized into one-month WKY group and three-month WKY group, 10 rats per groups, based on the intervention time. The 2 h NAIs-SHR group and 6 h NAIs-SHR group were exposed to an environment with NAIs concentrations of 4.5×10~4-5×10~4 cm~3 per day for 2 h and 6 h. The WKY group and SHR group were exposed to normal air on a daily basis. Blood pressure of rats in each group was measured every three days, while weight was measured once a week. After sacrificing the rats in the first month and the third month of rearing, wet weight of the organs was weighed. The enzyme linked immunosorbent assay(ELISA) was used to detect 8-hydroxylated deoxyguanosine(8-OHdG), interleukin-6(IL-6), interleukin-8(IL-8), tumor necrosis factor-α(TNF-α), nitric oxide(NO) and endothelin-1(ET-1) levels. Reactive oxygen species(ROS) detection kit was used to detect ROS level. Malondialdehyde(MDA) and superoxide dismutase(SOD), glutathione(GSH) and glutathione disulfide(GSSG) were measured by colorimetric analysis. HE staining was conducted to observe the histopathological morphological changes of the thoracic aorta in each group, and Western blot was conducted to detect the thoracic aortap38 mitogen-activated protein kinase(p38 MAPK), extracellular signal-regulated kinases(ERK), c-Jun n-terminal kinase(JNK), c-fos proteins, c-jun proteins and their phosphorylated proteins level. RESULTS: The weight of WKY male mice in the same week age group was higher than that of SHR control group, and there was no significant difference in the weight between the other groups. The coefficient of heart in SHR control group(4.66±0.48) was higher than that in WKY group(3.73±0.15)(P<0.05), while there were no significant differences in the coefficients of brain, kidney, liver and spleen among the groups. Blood pressure in WKY group at the same age was lower than that in SHR group, and blood pressure in SHR control group at 2-5 and 8-11 weeks was higher than that in 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). HE staining showed that the internal, middle and external membranes of thoracic aorta in 2 h NAIs-SHR group and 6 h NAIs-SHR group were improved to varying degrees compared with those in SHR control group, including disordered internal membrane structure, thickened middle membrane and broken external membrane. In terms of oxidative stress levels, compared with the SHR control group, the ROS(0.66%±0.17%, 0.49%±0.32%) and 8-OHdG((48.29±8.00) ng/mL, (33.13±14.67)ng/mL) levels were lower in the 6 h NAIs-SHR group(P<0.05), while the GSH/GSSG ratio was higher in the one-month 6 h NAIs-SHR group(10.08±4.93). Compared with the 2 h NAIs-SHR group, the ROS level(0.99%±0.19%) was lower in the 6 h NAIs-SHR group(P<0.05). In terms of inflammatory factor levels, compared with the SHR control group, the IL-8 levels((160.44±56.54) ng/L, (145.77±38.39) ng/L) were lower in the 6 h NAIs-SHR group(P<0.05), while the ET-1 level((249.55±16.98) ng/L) was higher in the one-month WKY group. There was no significant difference in NO levels among the groups. The relative expression of p-p38 protein in the thoracic aorta of rats in the one-month SHR control group was lower than that in the WKY group(P<0.05). The relative expression of p-p38 and p-c-fos proteins in the thoracic aorta of rats at three-months was higher in the SHR control group than in the 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). CONCLUSION: The intervention of NAIs at a concentration of 4.5×10~4-5×10~4/cm~3 may regulate the partial oxidation and inflammatory state of SHR rats through the ROS/MAPK/AP1 signaling pathway, thereby reducing their blood pressure level.


Assuntos
Hipertensão , Interleucina-8 , Feminino , Ratos , Masculino , Camundongos , Animais , Ratos Endogâmicos SHR , Pressão Sanguínea , Ratos Endogâmicos WKY , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/farmacologia , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Espécies Reativas de Oxigênio , Estresse Oxidativo , Inflamação
3.
Acta Neurobiol Exp (Wars) ; 84(1): 51-58, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587324

RESUMO

Levetiracetam (LEV) is a drug commonly used as an anticonvulsant. However, recent evidence points to a possible role as an antioxidant. We previously demonstrated the antioxidant properties of LEV by significantly increasing catalase and superoxide dismutase activities and decreasing the hydrogen peroxide (H2O2) levels in the hippocampus of rats with temporal lobe epilepsy (TLE) showing scavenging properties against the hydroxyl radical. The aim of the present work was to evaluate, the effect of LEV on DNA oxidation, by determining 8­hydroxy­2­deoxyguanosine (8­OHdG) levels, and glutathione content, through reduced (GSH) and oxidized (GSSG) glutathione levels, in the hippocampus of rats with TLE. Male Wistar rats were assigned to the control (CTRL), CTRL+LEV, epileptic (EPI) and EPI+LEV groups. TLE was induced using the lithium­pilocarpine model. Thirteen weeks after TLE induction, LEV was administered for one week through osmotic pumps implanted subcutaneously. The determination of 8­OHdG, GSH and GSSG levels were measured using spectrophotometric methods. We showed that LEV alone significantly increased 8­OHdG and GSSG levels in the hippocampus of control rats compared to those in epileptic condition. No significant differences in GSH levels were observed. LEV could induce changes in the hippocampus increasing DNA oxidation and GSSG levels under nonepileptic condition but not protecting against the mitochondrial dysfunction observed in TLE probably by mechanisms related to changes in chromatin structure, neuroinflammation and alterations in redox components.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Piracetam , Masculino , Ratos , Animais , Levetiracetam/efeitos adversos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Piracetam/efeitos adversos , Antioxidantes/uso terapêutico , Dissulfeto de Glutationa/efeitos adversos , Peróxido de Hidrogênio/efeitos adversos , Ratos Wistar , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Glutationa/metabolismo , Oxirredução
4.
Theranostics ; 14(5): 1939-1955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505601

RESUMO

Rationale: Cancer continues to be a significant public health issue. Traditional treatments such as surgery, radiotherapy, and chemotherapy often fall short because of intrinsic issues such as lack of specificity and poor drug delivery, leading to insufficient drug concentration at the tumor site and/or potential side effects. Consequently, improving the delivery of conventional chemotherapy drugs like doxorubicin (DOX) is crucial for their therapeutic efficacy. Successful cancer treatment is achieved when regulated cell death (RCD) of cancer cells, which includes apoptotic and non-apoptotic processes such as ferroptosis, is fundamental to successful cancer treatment. The developing field of nanozymes holds considerable promise for innovative cancer treatment approaches. Methods: A dual-metallic nanozyme system encapsulated with DOX was created, derived from metal-organic frameworks (MOFs), designed to combat tumors by depleting glutathione (GSH) and concurrently liberating DOX. The initial phase of the study examined the GSH oxidase-mimicking function of the dimetallic nanozyme (ZIF-8/SrSe) through enzyme kinetic assays and Density Functional Theory (DFT) simulations. Following this, we probed the ability of ZIF-8/SrSe@DOX to release DOX in response to the tumor microenvironment in vitro, alongside examining its anticancer capabilities and mechanisms prompting apoptosis or ferroptosis in cancer cells. Moreover, we established tumor-bearing animal models to corroborate the anti-tumor effectiveness of our nanozyme complex and to identify the involved apoptotic and ferroptotic pathways implicated. Results: Enzyme kinetic analyses demonstrated that the ZIF-8/SrSe nanozyme exhibits substantial GSH oxidase-like activity, effectively oxidizing reduced GSH to glutathione disulfide (GSSG), while also inhibiting glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). This inhibition led to an imbalance in iron homeostasis, pronounced caspase activation, and subsequent induction of apoptosis and ferroptosis in tumor cells. Additionally, the ZIF-8/SrSe@DOX nanoparticles efficiently delivered DOX, causing DNA damage and further promoting apoptotic and ferroptotic pathways. Conclusions: This research outlines the design of a novel platform that combines chemotherapeutic agents with a Fenton reaction catalyst, offering a promising strategy for cancer therapy that leverages the synergistic effects of apoptosis and ferroptosis.


Assuntos
Ferroptose , Neoplasias , Morte Celular Regulada , Animais , Apoptose , Sistemas de Liberação de Medicamentos , Glutationa , Dissulfeto de Glutationa , Doxorrubicina/farmacologia , Oxirredutases , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542762

RESUMO

The parenteral nutrition (PN) received by premature newborns is contaminated with peroxides that induce global DNA hypermethylation via oxidative stress. Exposure to peroxides could be an important factor in the induction of chronic diseases such as those observed in adults who were born preterm. As endogenous H2O2 is a major regulator of glucose-lipid metabolism, our hypothesis was that early exposure to PN induces permanent epigenetic changes in H2O2 metabolism. Three-day-old guinea pigs were fed orally (ON), PN or glutathione-enriched PN (PN+GSSG). GSSG promotes endogenous peroxide detoxification. After 4 days, half the animals were sacrificed, and the other half were fed ON until 16 weeks of age. The liver was harvested. DNA methylation and mRNA levels were determined for the SOD2, GPx1, GCLC, GSase, Nrf2 and Keap1 genes. PN induced GPx1 hypermethylation and decreased GPx1, GCLC and GSase mRNA. These findings were not observed in PN+GSSG. PN+GSSG induced Nrf2 hypomethylation and increased Nrf2 and SOD2 mRNA. These observations were independent of age. In conclusion, in neonatal guinea pigs, PN induces epigenetic changes, affecting the expression of H2O2 metabolism genes. These changes persist for at least 15 weeks after PN. This disruption may signify a permanent reduction in the capacity to detoxify peroxides.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Animais , Cobaias , Peróxido de Hidrogênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais Recém-Nascidos , Nutrição Parenteral/efeitos adversos , Glutationa/metabolismo , Peróxidos/metabolismo , Suplementos Nutricionais , Epigênese Genética , RNA Mensageiro/genética
6.
Int J Biol Macromol ; 264(Pt 2): 130634, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460624

RESUMO

The nature of nano molecules as a self-assembled nanocomposite surface depends on the nanoparticles of sodium butyrate, cellulose, and pycnogenol; the synthesis is achieved via precipitation and grinding methods. The excellent functionalized surface of nanocomposite (NCP) enables the loading of the selected drugs, where the efficiency of the NCP surface arrived at 92.2 %. The electrochemical behavior emphasized the success of a functionalized NCP surface for incorporation with drugs for the drug delivery system, the results of cytotoxicity detect the effect of NCP on the mouse normal liver (BNL) cells, where the high and low concentrations on the BNL cells have a safe dose. Cell viability with BNL cells was reported at 101.8 % with10 µL and 100.12 % with 100 µL, the interaction between the NCP and the human serum albumin (HSA) at room temperature. The low interaction rate with the glutamate and increased binding with the oxidized glutathione disulfide (GSSG) and reduced glutathione (SGH) reflect the antioxidant activity of NCP. The strong binding of NCP with biomolecules such as glucose is referred to as the biosensor property. The results recommend that NCP is an excellent nanocarrier for drug delivery and glucose biosensors for diabetes.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Humanos , Animais , Camundongos , Glucose , Antioxidantes/farmacologia , Glutationa , Nanocompostos/química , Dissulfeto de Glutationa , Técnicas Biossensoriais/métodos
7.
J Cell Mol Med ; 28(7): e18212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516826

RESUMO

SBFI26, an inhibitor of FABP5, has been shown to suppress the proliferation and metastasis of tumour cells. However, the underlying mechanism by which SBFI26 induces ferroptosis in breast cancer cells remains largely unknown. Three breast cancer cell lines were treated with SBFI26 and CCK-8 assessed cytotoxicity. Transcriptome was performed on the Illumina platform and verified by qPCR. Western blot evaluated protein levels. Malondialdehyde (MDA), total superoxide dismutase (T-SOD), Fe, glutathione (GSH) and oxidized glutathione (GSSG) were measured. SBFI26 induced cell death time- and dose-dependent, with a more significant inhibitory effect on MDA-MB-231 cells. Fer-1, GSH and Vitamin C attenuated the effects but not erastin. RNA-Seq analysis revealed that SBFI26 treatment significantly enriched differentially expressed genes related to ferroptosis. Furthermore, SBFI26 increased intracellular MDA, iron ion, and GSSG levels while decreasing T-SOD, total glutathione (T-GSH), and GSH levels.SBFI26 dose-dependently up-regulates the expression of HMOX1 and ALOX12 at both gene and protein levels, promoting ferroptosis. Similarly, it significantly increases the expression of SAT1, ALOX5, ALOX15, ALOXE3 and CHAC1 that, promoting ferroptosis while downregulating the NFE2L2 gene and protein that inhibit ferroptosis. SBFI26 leads to cellular accumulation of fatty acids, which triggers excess ferrous ions and subsequent lipid peroxidation for inducing ferroptosis.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Dissulfeto de Glutationa , Ferroptose/genética , Peroxidação de Lipídeos , Glutationa , Ferro , Superóxido Dismutase/genética , Espécies Reativas de Oxigênio , Proteínas de Ligação a Ácido Graxo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38432191

RESUMO

BACKGROUND: Reduced and oxidized glutathione play an important role for the intracellular detoxification of reactive oxygen species. The iron-dependent formation of such reactive oxygen species in conjunction with the inhibition of the redox-balancing enzyme glutathione peroxidase 4 underlie an imbalance in the cellular redox state, thereby resulting in a non-apoptotic form of cell death, defined as ferroptosis, which is relevant in several pathologies. METHODS: Here we present a rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based method providing the accurate quantification of 12 glutathione pathway metabolites after in situ derivatization with N-Ethylmaleimide (NEM). The method was validated regards linearity, recovery and accuracy as well as precision. The assay includes glutathione and its oxidized form glutathione disulfide. Furthermore, the related precursors cysteine, cystine, glutamic acid, γ-glutamylcysteine and cysteinylglycine, biomarkers of protein crosslinking such as cystathionine and lanthionine, as well as metabolites of the transsulfuration pathway, methionine, homocysteine and serine are simultaneously determined. RESULTS: Twelve glutathione pathway metabolites were simultaneously analyzed in four different human cell line extracts within a total LC run time of 5.5 min. Interday coefficients of variation (1.7 % to 12.0 %), the mean observed accuracy (100.0 % ± 5.2 %), linear quantification ranges over three orders of magnitude for all analytes and sufficient metabolite stability after NEM-derivatization demonstrate method reliability. Immediate derivatization with NEM at cell harvesting prevents autooxidation of glutathione, ensures accurate results for the GSH/GSSG redox ratio and thereby allows interpretation of cellular redox state. CONCLUSION: The described UPLC-MS/MS method provides a sensitive and selective tool for a fast and simultaneous analysis of glutathione pathway metabolites, its direct precursors and related compounds. Assay performance characteristics demonstrate the suitability of the method for applications in different cell cultures. Therefore, by providing glutathione related functional metabolic readouts, the method enables investigations in mechanisms of ferroptosis and alterations in oxidative stress levels in several pathophysiologies.


Assuntos
60705 , Espectrometria de Massas em Tandem , Humanos , Etilmaleimida , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espécies Reativas de Oxigênio , Reprodutibilidade dos Testes , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Oxirredução
9.
Nano Lett ; 24(14): 4091-4100, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38489158

RESUMO

Catalytic cancer therapy targets cancer cells by exploiting the specific characteristics of the tumor microenvironment (TME). TME-based catalytic strategies rely on the use of molecules already present in the TME. Amino groups seem to be a suitable target, given the abundance of proteins and peptides in biological environments. Here we show that catalytic CuFe2O4 nanoparticles are able to foster transaminations with different amino acids and pyruvate, another key molecule present in the TME. We observed a significant in cellulo decrease in glutamine and alanine levels up to 48 h after treatment. In addition, we found that di- and tripeptides also undergo catalytic transamination, thereby extending the range of the effects to other molecules such as glutathione disulfide (GSSG). Mechanistic calculations for GSSG transamination revealed the formation of an imine between the oxo group of pyruvate and the free -NH2 group of GSSG. Our results highlight transamination as alternative to the existing toolbox of catalytic therapies.


Assuntos
Aminoácidos , Neoplasias , Aminoácidos/química , Dissulfeto de Glutationa , Microambiente Tumoral , Aminas , Ácido Pirúvico , Catálise
10.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 161-168, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430026

RESUMO

CircRNAs can regulate ferroptosis and affect cancer development and are promising biomarkers and therapeutic targets in lung cancer. circSCUBE3 is expressed in lung adenocarcinoma (LUAD) tissues. In this study, our purpose was to study the role and regulatory mechanism of circSCUBE3 in LUAD ferroptosis. circSCUBE3 was identified to be significantly downregulated in LUAD samples and cell lines. The expression of biomarkers related to lipid oxidation (4-HNE) and ferroptosis (Ptgs2) was both downregulated in LUAD tissues, suggesting the ferroptosis resistance in LUAD. Erastin, a ferroptosis inducer, was used to stimulate the LUAD cells for 48 h. The cell viability, 4-HNE and Ptgs2 level of LUAD cells were decreased by exposure to erastin while the expression of circSCUBE3 was not significantly altered. We then overexpressed circSCUBE3 in LUAD cells and found it decreased the GSH level and GSH/GSSG ratio in LUAD cells. CircSCUBE3 might serve as an independent factor of ferroptosis and may induce ferroptosis in LUAD by inhibiting GSH synthesis. The loss-of-function experiments were conducted, and circSCUBE3 deficiency reversed the erastin-induced reduction in cell viability, GSH level, GSH/GSSG ratio, mitochondrial membrane potential and elevation in MDA content, Ptgs2, 4-HNE expression as well as lipid ROS production. CircSCUBE3 negatively regulated GPX4 expression in LUAD cells, and the silencing of GPX4 counteracted the impact of circSCUBE3 deficiency on LUAD cell viability as well as ferroptosis, suggesting that circSCUBE3 regulated the GPX4-mediated GSH synthesis in LUAD. CircSCUBE3 was to bind to CREB, which activated the transcription of GPX4. CircSCUBE3 negatively regulated GPX4 expression by competitively interacting with CREB. In the tumor-bearing mouse models, circSCUBE3 silencing promoted tumor growth and reversed the erastin treatment-induced inhibition on tumorigenesis in vivo. In conclusion, circSCUBE3 inhibited LUAD development by promoting ferroptosis via the CREB/GPX4/GSH axis, which might provide a novel option for the LUAD targeted therapy.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Ferroptose , Neoplasias Pulmonares , Animais , Camundongos , Ciclo-Oxigenase 2/genética , Ferroptose/genética , Dissulfeto de Glutationa , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Biomarcadores , Lipídeos
11.
Nat Commun ; 15(1): 1733, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409212

RESUMO

Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.


Assuntos
Glutarredoxinas , Glutationa , Proteínas de Fluorescência Verde/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Oxirredução , Dissulfetos/metabolismo , Catálise , Dissulfeto de Glutationa/metabolismo
12.
Chem Biol Drug Des ; 103(2): e14489, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38404216

RESUMO

Rapid restoration of perfusion in ischemic myocardium is the most direct and effective treatment for coronary heart disease but may cause myocardial ischemia/reperfusion injury (MIRI). Cinnamaldehyde (CA, C9H8O), a key component in the well-known Chinese medicine cinnamomum cassia, has cardioprotective effects against MIRI. This study aimed to observe the therapeutic effect of CA on MIRI and to elucidate its potential mechanism. H9C2 rat cardiomyocytes were pretreated with CA solution at 0, 10, and 100 µM, respectively and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Then the cell viability, the NF-κB and caspase3 gene levels, the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, superoxide dismutase (SOD) level, reactive oxygen species (ROS) generation, 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) were detected. The severity of DNA damage was assessed by tail moment (TM) values using alkaline comet assay. Besides, the DNA damage-related proteins and the key proteins of the Nrf2 pathway were detected by western blot. CA treatment increased the cell viability, GHS/GSSG ratio, SOD level, PARP1, Nrf2, PPAR-γ, and HO-1 protein levels of H9C2 cardiomyocytes, while reducing NF-κB, caspase3, ROS level, 4-HNE and MDA content, γ-H2AX protein level, and TM values. Inhibition of the Nrf2 pathway reversed the effect of CA on cell viability and apoptosis of OGD/R induced H9C2 cardiomyocytes. Besides, 100 µM CA was more effective than 10 µM CA. In the OGD/R-induced H9C2 cardiomyocyte model, CA can protect cardiomyocytes from MIRI by attenuating lipid peroxidation and repairing DNA damage. The mechanism may be related to the activation of the Nrf2 pathway.


Assuntos
Acroleína , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Oxigênio , Animais , Ratos , Acroleína/análogos & derivados , Acroleína/farmacologia , Apoptose , Dano ao DNA , Glucose/farmacologia , Dissulfeto de Glutationa/genética , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Peroxidação de Lipídeos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
13.
Sci Total Environ ; 922: 170504, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307292

RESUMO

Zero-valent sulfur, commonly utilized as a fertilizer or fungicide, is prevalent in various environmental contexts. Its most stable and predominant form, octasulfur (S8), plays a crucial role in microbial sulfur metabolism, either through oxidation or reduction. However, the mechanism underlying its cellular uptake remains elusive. We presented evidence that zero-valent sulfur was adsorbed to the cell surface and then dissolved into the membrane lipid layer as lipid-soluble S8 molecules, which reacted with cellular low-molecular thiols to form persulfide, e.g., glutathione persulfide (GSSH), in the cytoplasm. The process brought extracellular zero-valent sulfur into the cells. When persulfide dioxygenase is present in the cells, GSSH will be oxidized. Otherwise, GSSH will react with another glutathione (GSH) to produce glutathione disulfide (GSSG) and hydrogen sulfide (H2S). The mechanism is different from simple diffusion, as insoluble S8 becomes soluble GSSH after crossing the cytoplasmic membrane. The uptake process is limited by physical contact of insoluble zero-valent sulfur with microbial cells and the regeneration of cellular thiols. Our findings elucidate the cellular uptake mechanism of zero-valent sulfur, which provides critical information for its application in agricultural practices and the bioremediation of sulfur contaminants and heavy metals.


Assuntos
Sulfeto de Hidrogênio , Lipídeos de Membrana , Sulfetos/metabolismo , Oxirredução , Dissulfeto de Glutationa , Compostos de Sulfidrila , Enxofre/metabolismo
14.
Mol Med ; 30(1): 24, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321393

RESUMO

BACKGROUND: Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS: The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1ß of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1ß, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS: The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1ß, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION: Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Nanosferas , Selênio , Humanos , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico , Dióxido de Silício/metabolismo , Dióxido de Silício/farmacologia , Dióxido de Silício/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Peroxidação de Lipídeos , Porosidade , Fator de Necrose Tumoral alfa/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Dissulfeto de Glutationa/uso terapêutico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Proteínas de Junções Íntimas/metabolismo
15.
Bull Exp Biol Med ; 176(3): 328-331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38340194

RESUMO

The parameters of oxidative damage of DNA, proteins, as well as the parameters of the thiol-disulfide system and C-reactive protein in adolescent girls and boys with exogenous constitutional obesity (ECO) were evaluated. In girls and boys with obesity, the levels of 8-hydroxy-2'-deoxyguanosine (marker of DNA destruction) were higher than in controls. Evaluation of the activity of the thiol-disulfide system revealed increased levels of oxidized glutathione (GSSG) and decreased levels of the reduced glutathione (GSH) and GSSG ratio (GSH/GSSG) in adolescents with ECO regardless of the sex in comparison with the control. C-reactive protein was also higher in the ECO groups regardless of the sex. The levels of glutathione peroxidase in obese boys were higher than in girls. In view of the revealed shifts, corrective measures with the prescription of drugs with antioxidant properties are recommended in adolescents with ECO to stabilize the indices.


Assuntos
Proteína C-Reativa , Estresse Oxidativo , Masculino , Adolescente , Feminino , Humanos , Dissulfeto de Glutationa/metabolismo , Proteína C-Reativa/metabolismo , Glutationa/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Compostos de Sulfidrila , Obesidade , DNA/metabolismo , Dissulfetos , Oxirredução
16.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340597

RESUMO

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Assuntos
Poluentes Ambientais , Oryza , Antioxidantes/metabolismo , Plântula , Oryza/metabolismo , Pentanóis/metabolismo , Pentanóis/farmacologia , 1-Butanol/metabolismo , 1-Butanol/farmacologia , Poluentes Ambientais/metabolismo , Dissulfeto de Glutationa/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Raízes de Plantas/metabolismo
17.
J Ethnopharmacol ; 326: 117966, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38401661

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Traditional herbal medicines have been considered as a novel and effective way to treat many diseases. Lizhong decoction (LZD), a classical prescription composed of Zingiber officinale Rosc., Panax ginseng C. A. Mey., Atractylodes macrocephala Koidz., and Glycyrrhiza uralensis Fisch., has been used to treat gastrointestinal disorders in clinical practices for thousands of years. However, the mechanism of LZD in alleviating ulcerative colitis (UC) is still unclear. AIM OF THE STUDY: The purpose of this study was to clarify the potential molecular mechanism of LZD in improving UC. MATERIALS AND METHODS: The amelioration of LZD on dextran sodium sulfate (DSS)-induced UC mice was evaluated by body weight, colon length, pathology of colon tissues, pro-inflammatory cytokines, and intestinal tight junction (TJ) proteins. Moreover, the gene expression profiles of UC patients were extracted to investigate potential pathological mechanisms of UC. The influence of LZD on ferroptosis was analyzed by iron load, malondialdehyde (MDA), and the expression of ferroptosis-associated proteins. Meanwhile, the inhibition of LZD on oxidative stress (OS) was assessed by the superoxide dismutase (SOD) activity, as well as the expression levels of glutathione (GSH) and glutathione disulfide (GSSG). Furthermore, the influence of LZD on ferroptosis was assessed by inhibiting nuclear factor (erythroid-derived-2)-like 2 (Nrf2). RESULTS: LZD showed significant therapeutic effects in UC mice, including reduction of intestinal injury and inflammation. Moreover, LZD treatment notably upregulated the expression of TJ proteins. Further investigation indicated that LZD significantly inhibited the ferroptosis of enterocytes by decreasing iron load and MDA, and increasing the expression levels of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in colon tissues. Furthermore, the decreased activity of SOD, reduced level of GSH, and increased content of GSSG in UC mice were notably reversed by LZD. Consistent with in vivo results, LZD could markedly inhibit ferroptosis and OS in RSL3-induced Caco-2 cells. Mechanistically, LZD alleviated ferroptosis by suppressing OS through the activation of Nrf2 signaling. CONCLUSIONS: Collectively, LZD remarkably improved intestinal pathological injury in UC mice, and its potential mechanism was the suppression of ferroptosis in enterocytes by the Nrf2/SLC7A11/GPX4 pathway.


Assuntos
Colite Ulcerativa , Colite , Ferroptose , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Enterócitos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fator 2 Relacionado a NF-E2 , Dissulfeto de Glutationa , Células CACO-2 , Glutationa , Ferro , Superóxido Dismutase , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Sistema y+ de Transporte de Aminoácidos
18.
J Cardiovasc Pharmacol ; 83(4): 317-329, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207007

RESUMO

ABSTRACT: Chronic stress induces a group of unrecognized cardiovascular impairments, including elevated hemodynamic variables and vascular dysfunction. Moreover, hydrogen sulfide (H 2 S), a gasotransmitter that regulates the cardiovascular system decreases under chronic stress. Thus, this study assessed the impact of sodium hydrosulfide (NaHS) (H 2 S donor) on chronic restraint stress (CRS)-induced cardiovascular changes. For that purpose, male Wistar rats were restrained for 2 hours a day in a transparent acrylic tube over 8 weeks. Then, body weight, relative adrenal gland weight, serum corticosterone, H 2 S-synthesizing enzymes, endothelial nitric oxide synthetize expression, reactive oxygen species levels, lipid peroxidation, and reduced glutathione-to-oxidized glutathione (GSH 2 :GSSG) ratio were determined in the thoracic aorta. The hemodynamic variables were measured in vivo by the plethysmograph method. The vascular function was evaluated in vitro as vasorelaxant responses induced by carbachol or sodium nitroprusside, and norepinephrine (NE)-mediated vasocontractile responses in the thoracic aorta. CRS increased (1) relative adrenal gland weight; (2) hemodynamic variables; (3) vasoconstrictor responses induced by NE, (4) reactive oxygen species levels, and (5) lipid peroxidation in the thoracic aorta. In addition, CRS decreased (1) body weight; (2) vasorelaxant responses induced by carbachol; (3) GSH content, and (4) GSH 2 :GSSG ratio. Notably, NaHS administration (5.6 mg/kg) restored hemodynamic variables and lipid peroxidation and attenuated the vasoconstrictor responses induced by NE in the thoracic aorta. In addition, NaHS treatment increased relative adrenal gland weight and the GSH 2 :GSSG ratio. Taken together, our results demonstrate that NaHS alleviates CRS-induced hypertension by reducing oxidative stress and restoring vascular function in the thoracic aorta.


Assuntos
Sulfeto de Hidrogênio , Sulfetos , Ratos , Animais , Masculino , Espécies Reativas de Oxigênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Carbacol/farmacologia , Ratos Wistar , Sulfeto de Hidrogênio/metabolismo , Estresse Oxidativo , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Peso Corporal
19.
J Strength Cond Res ; 38(4): e189-e201, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266224

RESUMO

ABSTRACT: Ponce, T, Mainenti, MRM, de Barros, T, Cahuê, FLC, Fernanda, C, Piazera, BKL, Salerno, VP, and Vaisman, M. Biochemical and hormone markers in firefighters: effects of "search, rescue, and survival training" and its recovery. J Strength Cond Res 38(4): e189-e201, 2024-This study aimed to evaluate the hormonal and biochemical responses in military firefighter cadets to a search, rescue, and survival training (SRST) course. Forty-three male volunteers participated in the SRST over 15 days consisting of intense physical effort, sleep deprivation, and a survival period with food deprivation. At 3 timepoints (baseline, SRST, and 1 week rec), subjects submitted to blood collections, body composition examinations, physical performance evaluations, and cognitive function tests. After the SRST, lower values were registered for testosterone (764.0; 565.1-895.0 to 180.6; 133.6-253.5 ng·dl -1 ) and insulin-like growth factor-1 (IGF-1) (217; 180-238 to 116; 102-143 ng·ml -1 ). Increases were observed for cortisol (9.7; 8.2-11.7 to 18.3; 16.5-21,2 µg·dl -1 ), growth hormone (GH) (0.11; 0.06-0.20 to 2.17; 1.4-3.4 ng·ml -1 ), CP, GSSG, lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase as well as the antioxidant response of superoxide dismutase and glutathione peroxidase. The values of gamma-glutamyl transferase were reduced. After 1 week of recovery, levels of GH, creatine kinase, GSH, and GSSG returned to baseline values ( p < 0.05). Vertical jump performance presented a regular positive correlation with testosterone (rho = 0.56 and p < 0.0001) and a strong negative correlation with cortisol (rho = -0.61 and p < 0.0001). Body fat showed a regular and positive correlation with both testosterone and IGF-1. We conclude that participation in the SRST caused significant hormonal and biochemical changes in individuals that correlated with a loss in physical performance. Importantly, the results suggest the need for longer recovery times before a return to normal military duties.


Assuntos
Bombeiros , Hormônio do Crescimento Humano , Humanos , Masculino , Hidrocortisona , Fator de Crescimento Insulin-Like I , Dissulfeto de Glutationa , Hormônio do Crescimento , Testosterona
20.
Biochem Biophys Res Commun ; 697: 149524, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38252991

RESUMO

Breast cancer (BC) is one of the malignancies threatening the woman's health. Our study aims to explore the underlying mechanism behind the anti-tumor function of Paris saponin VII (PS VII) in BC. Xenografting experiment was conducted to monitor the tumor growth. The Ki67 and 4-HNE expression were analyzed via immunohistochemical assay. After different treatments, the cell viability, proliferation, invasion, and migration capacity of BC cells were measured by the CCK-8, colony formation, transwell, and wound healing assays, respectively. The ratio of GSH/GSSG was measured by the GSH/GSSG ratio detection assay kit. The lipid ROS and Fe2+ levels were quantified by flow cytometry analysis. The expressions of TFR1, ACSL4, Nrf2, and GPX4 were measured via western blotting. Compared with the Ctrl group, the tumor volumes, and Ki67 expression were markedly reduced in PS VII groups, and the BC cell viability was decreased by PS VII treatment in a dose-dependent manner. The colony numbers, invasive cells, and migration rates were also significantly decreased by PS VII treatment. Then, the Nrf2 as well as GPX4 expressions were decreased and TFR1 expression was increased by PS VII treatment in vitro and in vivo, while there was no difference in ACSL4 expression between Ctrl and PS VII groups. Moreover, the above effects of PS VII could not be observed in GPX4 knockdown cells. PS VII can promote ferroptosis to inhibit BC via the Nrf2/GPX4 axis, which innovatively suggests the pro-ferroptosis effect and therapeutic potential of PS VII in BC.


Assuntos
Neoplasias da Mama , Ferroptose , Saponinas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Dissulfeto de Glutationa , Antígeno Ki-67 , Fator 2 Relacionado a NF-E2 , Saponinas/farmacologia , Saponinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...